Inhibition of lysosomal phospholipases by aminoglycoside antibiotics: in vitro comparative studies

Author:

Carlier M B,Laurent G,Claes P J,Vanderhaeghe H J,Tulkens P M

Abstract

Aminoglycoside antibiotics induce an early and characteristic lysosomal phospholipidosis in cultured fibroblasts and in kidney tubular cells. We have recently demonstrated an inhibition of lysosomal phospholipases A1 and A2 by gentamicin and amikacin in vitro. In vivo, gentamicin decreases the activity of phospholipase A1 (Laurent et al., Biochem. Pharmacol. 31:3861-3870, 1982). In the present study, we examined 14 aminoglycosides for in vitro inhibition of phospholipases. To mimic the situation prevailing in lysosomes, the enzymatic activities were assayed with phospholipid vesicles (liposomes) with a composition similar to that of lysosomal phospholipids (phosphatidylcholine, sphingomyelin, phosphatidylinositol, cholesterol; 4:4:3:5.5, molar ratio). We measured the hydrolysis of 1-palmitoyl-2-[1-14C]oleoyl phosphatidylcholine contained in the liposomes by a soluble fraction of highly purified lysosomes isolated from rat liver. Similar IC50S (concentrations causing 50% inhibition of enzymatic activity) were observed for dibekacin, gentamicin (with no major difference between C1, C1a, or C2), netilmicin, tobramycin, and kanamycin B. Sisomicin was slightly more inhibitory. Kanamycin A, N1-(L-4-amino-2-hydroxy-1-oxobutyl)dibekacin, and amikacin showed increasing IC50S. Streptomycin caused the least inhibition. Octa- and tetramethylkanamycin A are much less inhibitory than the parent drug. These results point to the number, the nature, and the respective positions of the cationic groups as essential determinants in causing inhibition of phospholipid breakdown. The binding of three aminoglycosides (gentamicin, amikacin, streptomycin) to the liposomes at pH 5.4 was also measured by gel permeation and was found to be related to the respective inhibitory potency of each drug. Insofar as lysosomal phospholipidosis is an early sign of intoxication by aminoglycosides, these results may serve as a basis for the development or screening of less toxic compounds in this class of antimicrobial agents.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3