Automated and Manual Methods of DNA Extraction for Aspergillus fumigatus and Rhizopus oryzae Analyzed by Quantitative Real-Time PCR

Author:

Francesconi Andrea1,Kasai Miki1,Harrington Susan M.2,Beveridge Mara G.1,Petraitiene Ruta13,Petraitis Vidmantas13,Schaufele Robert L.1,Walsh Thomas J.1

Affiliation:

1. National Cancer Institute, National Institutes of Health, Bethesda, Maryland

2. NIH Clinical Center, NIH, Bethesda, Maryland

3. LASP, SAIC-Frederick Inc., Frederick, Maryland

Abstract

ABSTRACT Quantitative real-time PCR (qPCR) may improve the detection of fungal pathogens. Extraction of DNA from fungal pathogens is fundamental to optimization of qPCR; however, the loss of fungal DNA during the extraction process is a major limitation to molecular diagnostic tools for pathogenic fungi. We therefore studied representative automated and manual extraction methods for Aspergillus fumigatus and Rhizopus oryzae . Both were analyzed by qPCR for their ability to extract DNA from propagules and germinated hyphal elements (GHE). The limit of detection of A. fumigatus and R. oryzae GHE in bronchoalveolar lavage (BAL) fluid with either extraction method was 1 GHE/ml. Both methods efficiently extracted DNA from A. fumigatus , with a limit of detection of 1 × 10 2 conidia. Extraction of R. oryzae by the manual method resulted in a limit of detection of 1 × 10 3 sporangiospores. However, extraction with the automated method resulted in a limit of detection of 1 × 10 1 sporangiospores. The amount of time to process 24 samples by the automated method was 2.5 h prior to transferring for automation, 1.3 h of automation, and 10 min postautomation, resulting in a total time of 4 h. The total time required for the manual method was 5.25 h. The automated and manual methods were similar in sensitivity for DNA extraction from A. fumigatus conidia and GHE. For R. oryzae , the automated method was more sensitive for DNA extraction of sporangiospores, while the manual method was more sensitive for GHE in BAL fluid.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3