Novel Approach to the Formulation of an Epstein-Barr Virus Antigen-Based Nasopharyngeal Carcinoma Vaccine

Author:

Lutzky Viviana P.1,Corban Monika1,Heslop Lea1,Morrison Leanne E.1,Crooks Pauline1,Hall David F.2,Coman William B.2,Thomson Scott A.3,Moss Denis J.1

Affiliation:

1. Epstein Barr Virus Biology Laboratory, Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia

2. Head and Neck Unit, Princess Alexandra Hospital, Brisbane, Australia

3. John Curtin School of Medical Research, Australian National University, Canberra, Australia

Abstract

ABSTRACT Epstein-Barr virus (EBV) is associated with several malignant diseases including nasopharyngeal carcinoma (NPC), a common neoplasm throughout southeast Asia. Radiotherapy and chemotherapy can achieve remission, but a reemergence of disease is not uncommon. Therefore, there is a need for specific therapies that target the tumor through the recognition of EBV antigens. In NPC, latent membrane protein 1 (LMP1) and LMP2 offer the best opportunity for specific targeting since they are typically expressed and T-cell determinants in each of these proteins have been defined. We have attempted to maximize the opportunity of incorporating every possible CD4 and CD8 determinant in a single formulation. We have achieved this by generating a scrambled protein incorporating random overlapping peptide sets from EBNA1, LMP1, and LMP2, which was then inserted into a replication-deficient strain of adenovirus (adenovirus scrambled antigen vaccine [Ad-SAVINE]). This report describes the construction of this Ad-SAVINE construct, its utility in generating LMP1 and LMP2 responses in healthy individuals as well as NPC patients, and its capacity to define new epitopes. This formulation could have a role in NPC immunotherapy for all ethnic groups since it has the potential to activate all possible CD4 and CD8 responses within EBNA1 and LMPs.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3