Molecular Characterization and Lytic Activities of Streptococcus agalactiae Bacteriophages and Determination of Lysogenic-Strain Features

Author:

Domelier Anne-Sophie12,van der Mee-Marquet Nathalie12,Sizaret Pierre-Yves3,Héry-Arnaud Geneviève1,Lartigue Marie-Frédérique12,Mereghetti Laurent1,Quentin Roland12

Affiliation:

1. Equipe d'Accueil 3854, Bactéries et Risque Maternofoetal, Institut Fédératif de Recherche 136, Agents Transmissibles et Infectiologie, UFR Médecine, Université François Rabelais de Tours, 37032 Tours Cedex, France

2. Service de Bactériologie et Hygiène Hospitalière, Centre Hospitalier Universitaire Trousseau, 37044 Tours Cedex, France

3. INSERM ERI19 and PFTI RIO Microscopie Electronique, Université François Rabelais, 37032 Tours Cedex, France

Abstract

ABSTRACT The application of mitomycin C induction to 114 genetically diverse Streptococcus agalactiae strains generated 36 phage suspensions. On electron microscopy of the phage suspensions, it was possible to assign the phages to the Siphoviridae family, with three different morphotypes (A, B, and C). Phage genetic diversity was evaluated by a PCR-based multilocus typing method targeting key modules located in the packaging, structural, host lysis, lysogeny, replication, and transcriptional regulation clusters and in the integrase genes and by DNA digestion with EcoRI, HindIII, and ClaI. Thirty-three phages clustering in six distantly related molecular phage groups (I to VI) were identified. Each molecular group was morphotype specific except for morphotype A phages, which were found in five of the six phage groups. The various phage groups defined on the basis of molecular group and morphotype had specific lytic activities, suggesting that each recognized particular host cell targets and had particular lytic mechanisms. Comparison of the characteristics of lysogenic and propagating strains showed no difference in the serotype or clonal complex (CC) identified by multilocus sequence typing. However, all the lysogenic CC17 and CC19 strains presented catabolic losses due to a lack of catabolic decay of dl -alpha-glycerol-phosphate substrates (CC17) and of alpha- d -glucose-1-phosphate (CC19). Moreover, the phages from CC17 lysogenic strains displayed lytic replication in bacterial hosts from all S. agalactiae phylogenetic lineages other than CC23, whereas phages obtained from non-CC17 lysogenic strains lysed bacteria of similar evolutionary origin. Our findings suggest that the adaptive evolution of S. agalactiae exposed the bacteria of this species to various phage-mediated horizontal gene transfers, which may have affected the fitness of the more virulent clones.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3