Role of Streptococcus thermophilus MR-1C Capsular Exopolysaccharide in Cheese Moisture Retention

Author:

Low Deborah1,Ahlgren Jeffrey A.2,Horne Diane3,McMahon Donald J.1,Oberg Craig J.3,Broadbent Jeffery R.1

Affiliation:

1. Department of Nutrition and Food Sciences, Utah State University, Logan, Utah 84322-87001;

2. Biopolymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 616042; and

3. Department of Microbiology, Weber State University, Ogden, Utah 84408-25063

Abstract

ABSTRACT Recent work by our group has shown that an exopolysaccharide (EPS)-producing starter pair, Streptococcus thermophilus MR-1C and Lactobacillus delbrueckii subsp. bulgaricus MR-1R, can significantly increase moisture retention in low-fat mozzarella (D. B. Perry, D. J. McMahon, and C. J. Oberg, J. Dairy Sci. 80:799–805, 1997). The objectives of this study were to determine whether MR-1C, MR-1R, or both of these strains are required for enhanced moisture retention and to establish the role of EPS in this phenomenon. Analysis of low-fat mozzarella made with different combinations of MR-1C, MR-1R, and the non-EPS-producing starter culture strains S. thermophilus TA061 and Lactobacillus helveticus LH100 showed that S. thermophilus MR-1C was responsible for the increased cheese moisture level. To investigate the role of the S. thermophilus MR-1C EPS in cheese moisture retention, the epsE gene in this bacterium was inactivated by gene replacement. Low-fat mozzarella made with L. helveticus LH100 plus the non-EPS-producing mutant S. thermophilus DM10 had a significantly lower moisture content than did cheese made with strains LH100 and MR-1C, which confirmed that the MR-1C capsular EPS was responsible for the water-binding properties of this bacterium in cheese. Chemical analysis of the S. thermophilus MR-1C EPS indicated that the polymer has a novel basic repeating unit composed of d -galactose, l -rhamnose, and l -fucose in a ratio of 5:2:1.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3