Affiliation:
1. Department of Microbiology, College of Letters and Science, University of California, Los Angeles, California 90024
Abstract
The cytoplasmic nitrate reductase in heme mutant H-14 of
Staphylococcus aureus
was partially purified by steps which included ammonium sulfate fractionation and chromatography on Bio-Gel A 1.5m and ion-exchange columns. The active fractions from the ion-exchange columns showed two forms of the enzyme upon electrophoresis in nondenaturing gels of polyacrylamide; these corresponded to proteins of
R
f
0.16 and 0.28. Each form contained a predominant polypeptide of molecular weight 140,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The
R
f
0.16 form contained another major polypeptide of molecular weight 57,000, but the
R
f
0.28 form contained several other polypeptides. The sedimentation properties of the enzyme were examined after partial purification on Bio-Gel A 1.5m. In sucrose gradients containing Triton X-100 the enzyme sedimented as a homogeneous peak with an estimated molecular weight of 225,000; without detergent a heterogeneous profile was observed of molecular weight greater than 250,000. Treatment of the enzyme with trypsin increased the specific activity, and the enzyme sedimented as a homogeneous peak in sucrose gradients without Triton X-100, with an estimated molecular weight of 202,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that trypsin treatment converted the polypeptide of molecular weight 140,000 to a polypeptide of molecular weight 112,000. We conclude that the cytoplasmic nitrate reductase of
S. aureus
has a large subunit of molecular weight 140,000, which can be modified by trypsin to a polypeptide of molecular weight 112,000 without loss of catalytic activity.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献