Mechanisms controlling the two phosphate uptake systems in Neurospora crassa

Author:

Burns D J,Beever R E

Abstract

The development of the high-affinity and low-affinity phosphate uptake systems of Neurospora crassa has been followed during germination and early growth. The ratio between the activities of the two systems became constant by the time exponential growth began, although the value of this ratio depended on the external phosphate concentration. The regulatory mechanisms controlling the systems were investigated by following the changes that resulted when exponentially growing germlings adapted to one phosphate concentration were shifted to a different concentration. The high-affinity system was derepressed under conditions of phosphate starvation, and inhibited irreversibly by feedback inhibition under conditions of over-supply. The low-affinity system was also derepressed and subject to feedback inhibition under comparable conditions, but, in contrast, inhibition of this system was reversible. A detailed description is given of the interplay between the systems during adaptation to changes in phosphate supply. Changes that occurred in the internal phosphate pool support the hypothesis that this metabolite is responsible for controlling the activities of the systems, either by triggering derepression of new uptake system synthesis or by inhibiting the existing system by feedback.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phosphorus from wastewater to crops: An alternative path involving microalgae;Biotechnology Advances;2016-09

2. Physiology, Metabolism, and Molecular Aspects of Filamentous Fungi;Methods for General and Molecular Microbiology;2014-04-30

3. OBITUARY;New Zealand Journal of Botany;2010-09

4. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities;Nature Biotechnology;2006-09-24

5. Phosphonate transport in Phytophthora capsici;Plant Pathology;1997-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3