Affiliation:
1. Department of Microbiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.
Abstract
The genome of pseudorabies virus (PrV) consists of two components--a noninvertible long (L) and an invertible short (S) component. The S component is bracketed by inverted repeats. In some variant strains of PrV (which have a selective growth advantage in certain cell lines), a sequence normally present at the left end of the L component has been translocated to the right end of the L component next to the inverted repeat. Consequently, these strains have acquired a genome with an L component that is bracketed by inverted repeats and that also inverts. We have determined the restriction maps and have analyzed the nucleotide sequences of those parts of the genome of three strains with invertible L components that contain the translocated segment of DNA. The results were as follows. The translocated fragments were derived in all cases from the extreme left end of the L component only. The sizes of the translocated fragments were similar, ranging from 1.3 to 1.4 kilobase pairs. The junction between the L and S components in these strains was the same as that in standard viral concatemeric DNA. The translocation of sequences from the left end of the genome next to the inverted repeats was always accompanied by a deletion of sequences from the right end of the L component. The sizes of the deleted fragments varied considerably, ranging from 0.8 to 2.3 kilobase pairs. Sequence homology at the points of recombination, i.e., at the junction between the right end and the left end of the L component, existed sometimes but not always. A model depicting how a virus with a class 2 genome (such as PrV) may acquire a genome with characteristics of a class 3 genome (such as herpes simplex virus) is presented.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献