Novel Redox Potential-Based Screening Strategy for Rapid Isolation of Klebsiella pneumoniae Mutants with Enhanced 1,3-Propanediol-Producing Capability

Author:

Du Chenyu1,Zhang Yanping12,Li Yin2,Cao Zhu'an1

Affiliation:

1. Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China

2. Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China

Abstract

ABSTRACT This report describes a novel redox potential (oxidoreduction potential [ORP])-based screening strategy for the isolation of mutants of Klebsiella pneumoniae which have an increased ability to produce 1,3-propanediol (1,3-PD). This method can be described as follows: first, to determine an ORP range which is preferred for the wild-type strain to grow and to produce 1,3-PD; second, to subject a chemically mutagenized culture to a reduced ORP level which is deleterious for the wild-type strain. Colonies that showed high specific growth rates at deleterious ORP levels were selected, and their abilities to produce 1,3-PD were investigated. In an ORP-based screening experiment where the ORP was controlled at −280 mV, 4 out of 11 isolated strains were recognized as positive mutant strains. A mutant which is capable of producing higher concentrations of 1,3-PD was subjected to fed-batch fermentations for further characterization. Its preferred ORP level (−280 mV) was significantly lower than that of its parent (−190 mV). The highest 1,3-PD concentration of the mutant was 915 mmol liter −1 , which was 63.1% higher than that of the parent. Metabolic-flux analysis suggested that the intracellular reductive branch of the mutant was strengthened, which improved 1,3-PD biosynthesis. The procedure and results presented here provide a novel method of screening for strains with improved product formation.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3