Phage Inhibit Pathogen Dissemination by Targeting Bacterial Migrants in a Chronic Infection Model

Author:

Darch Sophie E.123,Kragh Kasper N.4,Abbott Evelyn A.123,Bjarnsholt Thomas45,Bull James J.26,Whiteley Marvin123

Affiliation:

1. Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA

2. Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA

3. John Ring LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, Texas, USA

4. Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark

5. Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark

6. Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA

Abstract

ABSTRACT The microbial communities inhabiting chronic infections are often composed of spatially organized micrometer-sized, highly dense aggregates. It has recently been hypothesized that aggregates are responsible for the high tolerance of chronic infections to host immune functions and antimicrobial therapies. Little is currently known regarding the mechanisms controlling aggregate formation and antimicrobial tolerance primarily because of the lack of robust, biologically relevant experimental systems that promote natural aggregate formation. Here, we developed an in vitro model based on chronic Pseudomonas aeruginosa infection of the cystic fibrosis (CF) lung. This model utilizes a synthetic sputum medium that readily promotes the formation of P. aeruginosa aggregates with sizes similar to those observed in human CF lung tissue. Using high-resolution imaging, we exploited this model to elucidate the life history of P. aeruginosa and the mechanisms that this bacterium utilizes to tolerate antimicrobials, specifically, bacteriophage. In the early stages of growth in synthetic sputum, planktonic cells form aggregates that increase in size over time by expansion. In later growth, migrant cells disperse from aggregates and colonize new areas, seeding new aggregates. When added simultaneously with phage, P. aeruginosa was readily killed and aggregates were unable to form. When added after initial aggregate formation, phage were unable to eliminate all of the aggregates because of exopolysaccharide production; however, seeding of new aggregates by dispersed migrants was inhibited. We propose a model in which aggregates provide a mechanism that allows P. aeruginosa to tolerate phage therapy during chronic infection without the need for genetic mutation. IMPORTANCE Bacteria in chronic infections often reside in communities composed of micrometer-sized, highly dense aggregates. A primary challenge for studying aggregates has been the lack of laboratory systems that promote natural aggregate formation in relevant environments. Here, we developed a growth medium that mimics chronic lung infection and promotes natural aggregate formation by the bacterium Pseudomonas aeruginosa . High-resolution, single-cell microscopy allowed us to characterize P. aeruginosa ’s life history—seeding, aggregate formation, and dispersal—in this medium. Our results reveal that this bacterium readily forms aggregates that release migrants to colonize new areas. We also show that aggregates allow P. aeruginosa to tolerate therapeutic bacteriophage addition, although this treatment limits P. aeruginosa dissemination by targeting migrants.

Funder

HHS | NIH | NIH Office of the Director

Lundbeckfonden

Cystic Fibrosis Foundation

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3