Sequences in Gibbon Ape Leukemia Virus Envelope That Confer Sensitivity to HIV-1 Accessory Protein Vpu

Author:

Janaka Sanath Kumar1,Lucas Tiffany M.1,Johnson Marc C.1

Affiliation:

1. Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65201

Abstract

ABSTRACT HIV-1 efficiently forms pseudotyped particles with many gammaretrovirus glycoproteins, such as Friend murine leukemia virus (F-MLV) Env, but not with the related gibbon ape leukemia virus (GaLV) Env or with a chimeric F-MLV Env with a GaLV cytoplasmic tail domain (CTD). This incompatibility is modulated by the HIV-1 accessory protein Vpu. Because the GaLV Env CTD does not resemble tetherin or CD4, the well-studied targets of Vpu, we sought to characterize the modular sequence in the GaLV Env CTD required for this restriction in the presence of Vpu. Using a systematic mutagenesis scan, we determined that the motif that makes GaLV Env sensitive to Vpu is INxxIxxVKxxVxRxK. This region in the CTD of GaLV Env is predicted to form a helix. Mutations in the CTD that would break this helix abolish sensitivity to Vpu. Although many of these positions can be replaced with amino acids with similar biophysical properties without disrupting the Vpu sensitivity, the final lysine residue is required. This Vpu sensitivity sequence appears to be modular, as the unrelated Rous sarcoma virus (RSV) Env can be made Vpu sensitive by replacing its CTD with the GaLV Env CTD. In addition, F-MLV Env can be made Vpu sensitive by mutating two amino acids in its cytoplasmic tail to make it resemble more closely the Vpu sensitivity motif. Surprisingly, the core components of this Vpu sensitivity sequence are also present in the host surface protein CD4, which is also targeted by Vpu through its CTD.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3