Rgc2 Regulator of Glycerol Channel Fps1 Functions as a Homo- and Heterodimer with Rgc1

Author:

Lee Jongmin1,Levin David E.12

Affiliation:

1. Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA

2. Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA

Abstract

ABSTRACT The plasma membrane aquaglyceroporin Fps1 is responsible for glycerol transport in yeast in response to changes in extracellular osmolarity. Fps1 functions as a homotetramer, and control of its channel activity in response to hyperosmotic shock involves a redundant pair of fungus-specific regulators, Rgc1 and Rgc2 (regulators of the glycerol channel), and the mitogen-activatd protein kinase (MAPK) Hog1 (high-osmolarity glycerol response). Rgc1 and Rgc2 maintain Fps1 in an open-channel state by binding to its C-terminal cytoplasmic domain. Phosphorylation of Rgc1 and Rgc2 by Hog1 induces their eviction from Fps1 and consequent channel closure. In the absence of Fps1 channel function, cells experience chronic cell wall stress, which may be exploited for antifungal drug development. We show here that Rgc1 and Rgc2 form homodimers and heterodimers with each other and that dimer formation of Rgc2 is mediated by its N-terminal domain. Mutations that prevent Rgc2 dimerization block its ability to open Fps1. Therefore, the Rgc-Rgc dimer interface might be an attractive drug target.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3