Role of Alginate and Its O Acetylation in Formation of Pseudomonas aeruginosa Microcolonies and Biofilms

Author:

Nivens David E.1,Ohman Dennis E.23,Williams Jessica45,Franklin Michael J.45

Affiliation:

1. Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, 379961;

2. Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 232982;

3. McGuire Veterans Affairs Medical Center, Richmond, Virginia 232493; and

4. Department of Microbiology4 and

5. Center for Biofilm Engineering,5 Montana State University, Bozeman, Montana 59717

Abstract

ABSTRACT Attenuated total reflection/Fourier transform-infrared spectrometry (ATR/FT-IR) and scanning confocal laser microscopy (SCLM) were used to study the role of alginate and alginate structure in the attachment and growth of Pseudomonas aeruginosa on surfaces. Developing biofilms of the mucoid (alginate-producing) cystic fibrosis pulmonary isolate FRD1, as well as mucoid and nonmucoid mutant strains, were monitored by ATR/FT-IR for 44 and 88 h as IR absorbance bands in the region of 2,000 to 1,000 cm −1 . All strains produced biofilms that absorbed IR radiation near 1,650 cm −1 (amide I), 1,550 cm −1 (amide II), 1,240 cm −1 (PO stretching, C—O—C stretching, and/or amide III vibrations), 1,100 to 1,000 cm −1 (C—OH and P—O stretching) 1,450 cm −1 , and 1,400 cm −1 . The FRD1 biofilms produced spectra with an increase in relative absorbance at 1,060 cm −1 (C—OH stretching of alginate) and 1,250 cm −1 (C—O stretching of the O -acetyl group in alginate), as compared to biofilms of nonmucoid mutant strains. Dehydration of an 88-h FRD1 biofilm revealed other IR bands that were also found in the spectrum of purified FRD1 alginate. These results provide evidence that alginate was present within the FRD1 biofilms and at greater relative concentrations at depths exceeding 1 μm, the analysis range for the ATR/FT-IR technique. After 88 h, biofilms of the nonmucoid strains produced amide II absorbances that were six to eight times as intense as those of the mucoid FRD1 parent strain. However, the cell densities in biofilms were similar, suggesting that FRD1 formed biofilms with most cells at depths that exceeded the analysis range of the ATR/FT-IR technique. SCLM analysis confirmed this result, demonstrating that nonmucoid strains formed densely packed biofilms that were generally less than 6 μm in depth. In contrast, FRD1 produced microcolonies that were approximately 40 μm in depth. An algJ mutant strain that produced alginate lacking O -acetyl groups gave an amide II signal approximately fivefold weaker than that of FRD1 and produced small microcolonies. After 44 h, the algJ mutant switched to the nonmucoid phenotype and formed uniform biofilms, similar to biofilms produced by the nonmucoid strains. These results demonstrate that alginate, although not required for P. aeruginosa biofilm development, plays a role in the biofilm structure and may act as intercellular material, required for formation of thicker three-dimensional biofilms. The results also demonstrate the importance of alginate O acetylation in P. aeruginosa biofilm architecture.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3