Integrated Capture and Spectroscopic Detection of Viruses

Author:

Vargas Crystal A.1,Wilhelm Allison A.2,Williams Jeremy1,Lucas Pierre2,Reynolds Kelly A.3,Riley Mark R.1

Affiliation:

1. Agricultural and Biosystems Engineering

2. Materials Science and Engineering

3. Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona 85724

Abstract

ABSTRACT The goal of this work is to develop an online monitoring scheme for detection of viruses in flowing drinking water. The approach applies an electrodeposition process that is similar to the use of charged membrane filters previously employed for collection of viruses from aqueous samples. In the present approach, charged materials are driven onto a robust optical sensing element which has high transparency to infrared light. A spectroscopic measurement is performed using the evanescent wave that penetrates no more than 1 μm from the surface of an infrared optical element in an attenuated total reflectance measurement scheme. The infrared measurement provides quantitative information on the amount and identity of material deposited from the water. Initial studies of this sensing scheme used proteins reversibly electrodeposited onto germanium chips. The results of those studies were applied to design a method for collection of viruses onto an attenuated total reflectance crystal. Spectral signatures can be discriminated between three types of protein and two viruses. There is the potential to remove deposited material by reversing the voltage polarity. This work demonstrates a novel and practical scheme for detection of viruses in water systems with potential application to near-continual, automated monitoring of municipal drinking water.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3