PEXEL is a proteolytic maturation site for both exported and non-exported Plasmodium proteins

Author:

Fierro Manuel A.1ORCID,Muheljic Ajla2,Sha Jihui3,Wohlschlegel James3,Beck Josh R.12ORCID

Affiliation:

1. Department of Biomedical Sciences, Iowa State University, Ames, lowa, USA

2. Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA

3. Department of Biological Chemistry, University of California, Los Angeles, California, USA

Abstract

ABSTRACT Obligate intracellular malaria parasites dramatically remodel their erythrocyte host through effector protein export to create a niche for survival. Most exported proteins contain a pentameric P lasmodium ex port el ement (PEXEL)/host-targeting motif that is cleaved in the parasite ER by the aspartic protease Plasmepsin V (PMV). This processing event exposes a mature N terminus required for translocation into the host cell and is not known to occur in non-exported proteins. Here, we report that the non-exported parasitophorous vacuole protein UIS2 contains a bona fide PEXEL motif that is processed in the P. falciparum blood stage. While the N termini of exported proteins containing the PEXEL and immediately downstream ~10 residues are sufficient to mediate translocation into the RBC, the equivalent UIS2 N terminus does not promote the export of a reporter. Curiously, the UIS2 PEXEL contains an unusual aspartic acid at the fourth position, which constitutes the extreme N-terminal residue following PEXEL cleavage (P1′, RIL↓DE). Using a series of chimeric reporter fusions, we show that Asp at P1′ is permissive for PMV processing but abrogates export. Moreover, mutation of this single UIS2 residue to alanine enables export, reinforcing that the mature N terminus mediates export, not PEXEL processing per se . Prompted by this observation, we further show that PEXEL sequences in the N termini of other non-exported rhoptry proteins are also processed, suggesting that PMV may be a more general secretory maturase than previously appreciated, similar to orthologs in related apicomplexans. Our findings provide new insight into the unique N-terminal constraints that mark proteins for export. IMPORTANCE Host erythrocyte remodeling by malaria parasite-exported effector proteins is critical to parasite survival and disease pathogenesis. In the deadliest malaria parasite Plasmodium falciparum , most exported proteins undergo proteolytic maturation via recognition of the pentameric P lasmodium ex port el ement (PEXEL)/host-targeting motif by the aspartic protease Plasmepsin V, which exposes a mature N terminus that is conducive for export into the erythrocyte host cell. While PEXEL processing is considered a unique mark of exported proteins, we demonstrate that PEXEL motifs are present and processed in non-exported proteins. Importantly, we show that specific residues at the variable fourth position of the PEXEL motif inhibit export despite being permissive for processing, reinforcing that features of the mature N terminus, and not PEXEL cleavage, identify cargo for export. This opens the door to further inquiry into the nature and evolution of the PEXEL motif.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3