Rates of Mineralization of Trace Concentrations of Aromatic Compounds in Lake Water and Sewage Samples

Author:

Rubin Howard E.1,Subba-Rao R. V.1,Alexander Martin1

Affiliation:

1. Laboratory of Soil Microbiology, Department of Agronomy, Cornell University, Ithaca, New York 14853

Abstract

The rates of mineralization of phenol, benzoate, benzylamine, p -nitrophenol, and di(2-ethylhexyl) phthalate added to lake water at concentrations ranging from a few picograms to nanograms per milliliter were directly proportional to chemical concentration. The rates were still linear at levels of <1 pg of phenol or p -nitrophenol per ml, but it was less than the predicted value at 1.53 pg of 2,4-dichlorophenoxyacetate per ml. Mineralization of 2,4-dichlorophenoxyacetate was not detected in samples of lake water containing 200 ng of the chemical per ml. The slope of a plot of the rate of phenol mineralization in samples of three lakes as a function of its initial concentration was lower at levels of 1 to 100 μg/ml than at higher concentrations. In lake water and sewage supplemented with <60 ng of 14 C-labeled benzoate or phenylacetate per ml, 95 to 99% of the radioactivity disappeared from solution, indicating that the microflora assimilated little or none of the carbon. The extent of mineralization of some compounds in samples of two lakes and sewage was least in the water with the lowest nutrient levels. No mineralization of 2,4-dichlorophenoxyacetate and the phthalate ester was observed in samples of an oligotrophic lake. These data suggest that mineralization of some chemicals at concentrations of <1 μg/ml is the result of activities of organisms different from those functioning at higher concentrations or of organisms that metabolize the chemicals at low concentrations but assimilate little or none of the substrate carbon.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3