Affiliation:
1. Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
2. Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
Abstract
ABSTRACT
Herpes simplex virus (HSV) and many other viruses, including HIV, initiate infection of host cells by binding to glycosaminoglycan (GAG) chains of cell surface proteoglycans. Although GAG mimetics, such as sulfated oligo- and polysaccharides, exhibit potent antiviral activities in cultured cells, the prophylactic application of these inhibitors as vaginal microbicides failed to protect women upon their exposure to HIV. A possible explanation for this failure is that sulfated oligo- and polysaccharides exhibit no typical virucidal activity, as their interaction with viral particles is largely electrostatic and reversible and thereby vulnerable to competition with GAG-binding proteins of the genital tract. Here we report that the cholestanol-conjugated sulfated oligosaccharide PG545, but not several other sulfated oligosaccharides lacking this modification, exhibited virucidal activity manifested as disruption of the lipid envelope of HSV-2 particles. The significance of the virus particle-disrupting activity of PG545 was also demonstrated in experimental animals, as this compound, in contrast to unmodified sulfated oligosaccharide, protected mice against genital infection with HSV-2. Thus, PG545 offers a novel prophylaxis option against infections caused by GAG-binding viruses.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献