Activity of Novispirin G10 against Pseudomonas aeruginosa In Vitro and in Infected Burns

Author:

Steinstraesser Lars12,Tack Brian F.3,Waring Alan J.4,Hong Teresa4,Boo Lee M.4,Fan Ming-Hui1,Remick Daniel I.5,Su Grace L.6,Lehrer Robert I.4,Wang Stewart C.1

Affiliation:

1. Departments of Surgery

2. Department of Plastic and Reconstructive Surgery, Ruhr University Bergmannsheil, Bochum, Germany

3. Department of Microbiology, University of Iowa, Ames, Iowa

4. Department of Medicine, UCLA School of Medicine, Los Angeles, California

5. Pathology, University of Michigan, Ann Arbor, Michigan

6. Medicine

Abstract

ABSTRACT The emergence of multidrug-resistant microbes has serious implications for managing infection and sepsis and has stimulated efforts to develop alternative treatments, such as antimicrobial peptides. The objective of this study was to test a designer peptide, novispirin G10, against multidrug-resistant microorganisms. By two-stage radial diffusion assays, its activity against such organisms compared favorably with that of standard antibiotics and other antimicrobial peptides. It killed bacteria very rapidly, was nonhemolytic, and was relatively noncytotoxic. The peptide induced an immediate, massive efflux of potassium from Pseudomonas aeruginosa , suggesting that it altered the permeability of its inner membrane. The presence of human serum reduced but did not eliminate its activity. We tested the in vivo activity of novispirin G10 in rats with an infected, partial-thickness burn that covered 20% of their total body surface area. The burned area was seeded with 10 6 CFU of a Silvadene-resistant P. aeruginosa strain, and 24 h later a single treatment with 0, 1, 3, or 6 mg of synthetic novispirin G10 ( n = 16 at each concentration) per kg was given intradermally. Significant bacterial killing ( P < 0.0001) was evident within 4 h in each peptide group compared to controls receiving vehicle. Antimicrobial peptides such as novispirin G10 may provide a useful alternative or adjunct to standard antibiotic agents in treating burns or other wound infections.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3