Post-transcriptional control of the onset of DNA synthesis by an insulin-like growth factor

Author:

Campisi J,Pardee A B

Abstract

The control of eucaryotic cell proliferation is governed largely by a series of regulatory events which occur in the G1 phase of the cell cycle. When stimulated to proliferate, quiescent (G0) 3T3 fibroblasts require transcription, rapid translation, and three growth factors for the growth state transition. We examined exponentially growing 3T3 cells to relate the requirements for G1 transit to those necessary for the transition from the G0 to the S phase. Cycling cells in the G1 phase required transcription, rapid translation, and a single growth factor (insulin-like growth factor [IGF] I) to initiate DNA synthesis. IGF I acted post-transcriptionally at a late G1 step. All cells in the G1 phase entered the S phase on schedule if either insulin (hyperphysiological concentration) or IGF I (subnanomolar concentration) was provided as the sole growth factor. In medium lacking all growth factors, only cells within 2 to 3 h of the S phase were able to initiate DNA synthesis. Similarly, cells within 2 to 3 h of the S phase were less dependent on transcription and translation for entry into the S phase. Cells responded very differently to inhibited translation than to growth factor deprivation. Cells in the early and mid-G1 phases did not progress toward the S phase during transcriptional or translational inhibition, and during translational inhibition they actually regressed from the S phase. In the absence of growth factors, however, these cells continued progressing toward the S phase, but still required IGF at a terminal step before initiating DNA synthesis. We conclude that a suboptimal condition causes cells to either progress or regress in the cell cycle rather than freezing them at their initial position. By using synchronized cultures, we also show that in contrast to earlier events, this final, IGF-dependent step did not require new transcription. This result is in contrast to findings that other growth factors induce new transcription. We examined the requirements for G1 transit by using a chemically transformed 3T3 cell line (BPA31 cells) which has lost some but not all ability to regulate its growth. Early- and mid-G1-phase BPA31 cells required transcription and translation to initiate DNA synthesis, although they did not regress from the S phase during translational inhibition. However, these cells did not need IGF for entry into the S phase.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference45 articles.

1. Specificity of oligo(dT)-cellulose chromatography in the isolation of polyadenylated RNA;Bantle J. A.;Anal. Biochem.,1976

2. Baserga R. 1976. Multiplication and division of mammalian cells. Marcel Dekker Inc. New York.

3. Restriction point control of cell growth by a labile protein: evidence for increased stability in transformed cells;Campisi J.;Proc. Natl. Acad. Sci. U.S.A.,1982

4. Epidermal growth factor. Annu;Carpenter G.;Rev. Biochem.,1979

5. Inhibitors of RNA synthesis and passage of chick embryo fibroblasts through the Gl period;Chadwick D. E.;J. Cell. Physiol.,1980

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3