Function of Cytochrome P450 Enzymes MycCI and MycG in Micromonospora griseorubida, a Producer of the Macrolide Antibiotic Mycinamicin

Author:

Anzai Yojiro1,Tsukada Shu-ichi1,Sakai Ayami1,Masuda Ryohei1,Harada Chie1,Domeki Ayaka1,Li Shengying2,Kinoshita Kenji3,Sherman David H.2,Kato Fumio1

Affiliation:

1. Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan

2. Life Sciences Institute, Department of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA

3. School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan

Abstract

ABSTRACT The cytochrome P450 enzymes MycCI and MycG are encoded within the mycinamicin biosynthetic gene cluster and are involved in the biosynthesis of mycinamicin II (a 16-membered macrolide antibiotic produced by Micromonospora griseorubida ). Based on recent enzymatic studies, MycCI is characterized as the C-21 methyl hydroxylase of mycinamicin VIII, while MycG is designated multifunctional P450, which catalyzes hydroxylation and also epoxidation at C-14 and C-12/13 on the macrolactone ring of mycinamicin. Here, we confirm the functions of MycCI and MycG in M. griseorubida . Protomycinolide IV and mycinamicin VIII accumulated in the culture broth of the mycCI disruption mutant; moreover, the mycCI gene fragment complemented the production of mycinamicin I and mycinamicin II, which are produced as major mycinamicins by the wild strain M. griseorubida A11725. The mycG disruption mutant did not produce mycinamicin I and mycinamicin II; however, mycinamicin IV accumulated in the culture broth. The mycG gene was located immediately downstream of the self-resistance gene myrB . The mycG gene under the control of mycGp complemented the production of mycinamicin I and mycinamicin II. Furthermore, the amount of mycinamicin II produced by the strain complemented with the mycG gene under the control of myrBp was approximately 2-fold higher than that produced by the wild strain. In M. griseorubida , MycG recognized mycinamicin IV, mycinamicin V, and also mycinamicin III as the substrates. Moreover, it catalyzed hydroxylation and also epoxidation at C-14 and C-12/13 on these intermediates. However, C-14 on mycinamicin I was not hydroxylated.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3