Salivary receptors for recombinant fimbrillin of Porphyromonas gingivalis

Author:

Amano A1,Sojar H T1,Lee J Y1,Sharma A1,Levine M J1,Genco R J1

Affiliation:

1. Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo 14214.

Abstract

Fimbriae are considered important in the adherence and colonization of Porphyromonas gingivalis in the oral cavity. It has been demonstrated that purified fimbriae bind to whole human saliva adsorbed to hydroxyapatite (HAP) beads, and the binding appears to be mediated by specific protein-protein interactions. Recently, we expressed the recombinant fimbrillin protein (r-Fim) of P. gingivalis corresponding to amino acid residues 10 to 337 of the native fimbrillin (A. Sharma, H.T. Sojar, J.-Y. Lee, and R.J. Genco, Infect. Immun. 61:3570-3573, 1993). We examined the ability of individual salivary components to promote the direct attachment of r-Fim to HAP beads. Purified r-Fim was radiolabeled with 125I and incubated with HAP beads which were coated with saliva or purified individual salivary components. Whole, parotid, and submandibular-sublingual salivas increased the binding of 125I-r-Fim to HAP beads. Submandibular-sublingual saliva was most effective in increasing the binding of 125I-r-Fim to HAP beads (1.8 times greater than that to uncoated HAP beads). The binding of 125I-r-Fim to HAP beads coated with acidic proline-rich protein 1 (PRP1) or statherin was four and two times greater, respectively, than that to uncoated HAP beads. PRP1 and statherin molecules were also found to bind 125I-r-Fim in an overlay assay. The binding of intact P. gingivalis cells to HAP beads coated with PRP1 or statherin was also enhanced, by 5.4 and 4.3 times, respectively, over that to uncoated HAP beads. The interactions of PRP1 and statherin with 125I-r-Fim were not inhibited by the addition of carbohydrates or amino acids. PRP1 and statherin in solution did not show inhibitory activity on 125I-r-Fim binding to HAP beads coated with PRP1 or statherin. These results suggest that P. gingivalis fimbriae bind strongly through protein-protein interactions to acidic proline-rich protein and statherin molecules which coat surfaces.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3