I/St Mice Hypersusceptible to Mycobacterium tuberculosis Are Resistant to M. avium

Author:

Kondratieva E. V.1,Evstifeev V. V.1,Kondratieva T. K.1,Petrovskaya S. N.1,Pichugin A. V.1,Rubakova E. I.1,Averbakh M. M.1,Apt A. S.1

Affiliation:

1. Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia

Abstract

ABSTRACT We previously demonstrated that mice of the I/St strain are extremely susceptible to Mycobacterium tuberculosis , as well as to the taxonomically distant intracellular bacteria Chlamydia pneumoniae and Salmonella enterica . To broaden our knowledge about the control of susceptibility to intracellular pathogens, we studied the infection caused by Mycobacterium avium virulent strain 724 in a panel of inbred mouse strains and found that I/St mice are resistant to M. avium . By comparing I/St mice with B6 mice, we demonstrated that (i) B6 mice are much more susceptible to infection caused by M. avium in terms of bacterial multiplication in the lung tissue and severity of lung pathology; (ii) in B6 mice but not in I/St mice infection leads to prolonged leukocyte infiltration of the lung tissue, development of necrotic lung granulomata, and lethality; and (iii) the unfavorable infectious course in B6 mice is accompanied by elevated production of gamma interferon, tumor necrosis factor alpha, and especially interleukin-12 in the lungs. Importantly, M. avium -resistant I/St mice carry a functional r allele of the Slc11a1 (formerly Nramp1 ) gene, while B6 mice have the Slc11a1 s genotype. Segregation genetic analysis of (I/St × B6) F2 hybrids demonstrated that susceptibility or resistance to infection caused by M. avium largely depended upon the Slc11a1 genotype and that other genetic traits had a relatively weak influence. This close-to-monogenic pattern differs sharply from the host control of many other intracellular bacterial infections, for which the involvement of numerous quantitative trait loci has been ubiquitously observed.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3