Influence of Reactive Oxygen Species on De Novo Acquisition of Resistance to Bactericidal Antibiotics

Author:

Hoeksema Marloes1,Brul Stanley1,ter Kuile Benno H.12

Affiliation:

1. Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands

2. Netherlands Food and Consumer Product Safety Authority, Office for Risk Assessment, Utrecht, The Netherlands

Abstract

ABSTRACT The radical-based theory proposes that three major classes of bactericidal antibiotics, i.e., β-lactams, quinolones, and aminoglycosides, have in common the downstream formation of lethal levels of reactive oxygen species (ROS) as part of the killing mechanism. If bactericidal antibiotics exhibit a common mechanism, then it is to be expected that the acquisition of resistance against these drugs would have some shared traits as well. Indeed, cells made resistant to one bactericidal antibiotic more rapidly became resistant to another. This effect was absent after induced resistance to a bacteriostatic drug. De novo acquisition of resistance to one bactericidal antibiotic provided partial protection to killing by bactericidal antibiotics from a different class. This protective effect was observed in short-term experiments. No protective effect was detected during 24-h exposures, suggesting that cross-resistance did not occur. In the wild-type strain, exposure to bactericidal antibiotics increased intracellular ROS levels. This increase in ROS levels was not observed when strains resistant to these drugs were exposed to the same concentrations. These results indicate that de novo acquisition of resistance to the bactericidal drugs tested involves a common cellular response that provides protection against ROS accumulation upon exposure to this type of antibiotics. A central mechanism or at least a few common elements within the separate mechanisms possibly play a role during the acquisition of antibiotic resistance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3