MBX-7591: a promising drug candidate against drug-resistant fungal infections

Author:

Pereira de Sa Nivea1ORCID,Del Poeta Maurizio12345ORCID

Affiliation:

1. Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA

2. Veterans Administration Medical Center, Northport, New York, USA

3. Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, USA

4. MicroRid Technologies Inc., Dix Hills, New York, USA

5. Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA

Abstract

ABSTRACT Invasive fungal infections (IFIs) caused by pathogenic fungi pose a significant public health concern, particularly for immunocompromised individuals. Mortality rates for IFIs remain high, and currently available treatment options are limited. Existing antifungal agents often suffer from limited clinical efficacy, poor fungicidal activity within the host, potential toxicity, and increasing ineffectiveness due to emerging resistance, especially against triazole drugs, the current mainstay of antifungal treatment. A recent study has identified MBX-7591, a small molecule with promising antifungal activity against Aspergillus fumigatus and other pathogenic fungi, including strains resistant to triazoles (C. Gutierrez-Perez, C. Puerner, J. T. Jones, S. Vellanki, E. M. Vesely, et al., mBio e01166-24, 2024, https://doi.org/10.1128/mbio.01166-24 ). This novel compound appears to inhibit stearoyl-CoA 9-desaturase, a key enzyme involved in fungal fatty acid biosynthesis. By disrupting the conversion of saturated fatty acids to oleic acid, MBX-7591 offers a unique mechanism of action, potentially reducing the risk of resistance development. Here, we now discuss the implications of these groundbreaking findings for overcoming antifungal drug resistance.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

U.S. Department of Veterans Affairs

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3