Structural Investigations of the Inhibition of Escherichia coli AmpC β-Lactamase by Diazabicyclooctanes

Author:

Lang Pauline A.ORCID,Leissing Thomas M.,Page Malcolm G. P.,Schofield Christopher J.ORCID,Brem JürgenORCID

Abstract

ABSTRACT β-Lactam antibiotics are presently the most important treatments for infections by pathogenic Escherichia coli, but their use is increasingly compromised by β-lactamases, including the chromosomally encoded class C AmpC serine-β-lactamases (SBLs). The diazabicyclooctane (DBO) avibactam is a potent AmpC inhibitor; the clinical success of avibactam combined with ceftazidime has stimulated efforts to optimize the DBO core. We report kinetic and structural studies, including four high-resolution crystal structures, concerning inhibition of the AmpC serine-β-lactamase from E. coli (AmpCEC) by clinically relevant DBO-based inhibitors: avibactam, relebactam, nacubactam, and zidebactam. Kinetic analyses and mass spectrometry-based assays were used to study their mechanisms of AmpCEC inhibition. The results reveal that, under our assay conditions, zidebactam manifests increased potency (apparent inhibition constant [Kiapp], 0.69 μM) against AmpCEC compared to that of the other DBOs (Kiapp = 5.0 to 7.4 μM) due to an ∼10-fold accelerated carbamoylation rate. However, zidebactam also has an accelerated off-rate, and with sufficient preincubation time, all the DBOs manifest similar potencies. Crystallographic analyses indicate a greater conformational freedom of the AmpCEC-zidebactam carbamoyl complex compared to those for the other DBOs. The results suggest the carbamoyl complex lifetime should be a consideration in development of DBO-based SBL inhibitors for the clinically important class C SBLs.

Funder

Innovative Medicines Initiative

Wellcome Trust

UKRI | Biotechnology and Biological Sciences Research Council

UKRI | Medical Research Council

UKRI | MRC | Medical Research Foundation

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference56 articles.

1. Molecular mechanisms of Escherichia coli pathogenicity;Croxen;Nat Rev Microbiol,2010

2. Recent advances in understanding enteric pathogenic Escherichia coli;Croxen;Clin Microbiol Rev,2013

3. Pathogenic Escherichia coli;Kaper;Nat Rev Microbiol,2004

4. Past and present perspectives on β-lactamases;Bush;Antimicrob Agents Chemother,2018

5. Updated functional classification of β-lactamases;Bush;Antimicrob Agents Chemother,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3