Suppression of Viral RNA Recombination by a Host Exoribonuclease

Author:

Cheng Chi-Ping1,Serviene Elena1,Nagy Peter D.1

Affiliation:

1. Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, Kentucky 40546

Abstract

ABSTRACT RNA viruses of humans, animals, and plants evolve rapidly due to mutations and RNA recombination. A previous genome-wide screen in Saccharomyces cerevisiae , a model host, identified five host genes, including XRN1 , encoding a 5′-3′ exoribonuclease, whose absence led to an ∼10- to 50-fold enhancement of RNA recombination in Tomato bushy stunt virus (E. Serviene, N. Shapka, C. P. Cheng, T. Panavas, B. Phuangrat, J. Baker, and P. D. Nagy, Proc. Natl. Acad. Sci. USA 102: 10545-10550, 2005). In this study, we found abundant 5′-truncated viral RNAs in xrn1Δ mutant strains but not in the parental yeast strains, suggesting that these RNAs might serve as recombination substrates promoting RNA recombination in xrn1Δ mutant yeast. This model is supported by data showing that an enhanced level of viral recombinant accumulation occurred when two different 5′-truncated viral RNAs were expressed in the parental and xrn1Δ mutant yeast strains or electroporated into plant protoplasts. Moreover, we demonstrate that purified Xrn1p can degrade the 5′-truncated viral RNAs in vitro. Based on these findings, we propose that Xrn1p can suppress viral RNA recombination by rapidly removing the 5′-truncated RNAs, the substrates of recombination, and thus reducing the chance for recombination to occur in the parental yeast strain. In addition, we show that the 5′-truncated viral RNAs are generated by host endoribonucleases. Accordingly, overexpression of the Ngl2p endoribonuclease led to an increased accumulation of cleaved viral RNAs in vivo and in vitro. Altogether, this paper establishes that host ribonucleases and host-mediated viral RNA turnover play major roles in RNA virus recombination and evolution.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3