Affiliation:
1. School of Medicine, Tsinghua University, Beijing, China
2. SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Tsinghua University, Beijing, China
3. School of Management, Shanxi Medical University, Taiyuan, China
Abstract
ABSTRACT
Powassan virus (POWV) is a tick-borne flavivirus known for causing fatal neuroinvasive diseases in humans. Recently, there has been a noticeable increase in POWV infections, emphasizing the urgency of understanding viral replication, pathogenesis, and developing interventions. Notably, there are no approved vaccines or therapeutics for POWV, and its classification as a biosafety level-3 (BSL-3) agent hampers research. To overcome these obstacles, we developed a replicon system, a self-replicating RNA lacking structural proteins, making it safe to operate in a BSL-2 environment. We constructed a POWV replicon carrying the Gaussia luciferase (Gluc) reporter gene and blasticidin (BSD) selectable marker. Continuous BSD selection led to obtain a stable POWV replicon-carrying Huh7 cell lines. We identified cell culture adaptive mutations G4079A, G4944T and G6256A, resulting in NS2A
R195K
, NS3
G122G
, and NS3
V560M
, enhancing RNA replication. We demonstrated the utility of the POWV replicon system for high-throughput screening (HTS) assay to identify promising antivirals against POWV replication. We further explored the applications of the POWV replicon system, generating single-round infectious particles (SRIPs) by transfecting Huh7-POWV replicon cells with plasmids encoding viral capsid (C), premembrane (prM), and envelope (E) proteins, and revealed the distinct antigenic profiles of POWV with ZIKV. In summary, the POWV replicon and SRIP systems represent crucial platforms for genetic and functional analysis of the POWV life cycle and facilitating the discovery of antiviral drugs.
IMPORTANCE
In light of the recent surge in human infections caused by POWV, a biosafety level-3 (BSL-3) classified virus, there is a pressing need to understand the viral life cycle and the development of effective countermeasures. To address this, we have pioneered the establishment of a POWV RNA replicon system and a replicon-based POWV SRIP system. Importantly, these systems are operable in BSL-2 laboratories, enabling comprehensive investigations into the viral life cycle and facilitating antiviral screening. In summary, these useful tools are poised to advance our understanding of the POWV life cycle and expedite the development of antiviral interventions.
Funder
MOST | National Key Research and Development Program of China
MOST | National Natural Science Foundation of China
北京市科学技术委员会 | Beijing Municipal Natural Science Foundation
Tsinghua University Vanke Special Fund for Public Health and Health Discipline Development
Publisher
American Society for Microbiology