Affiliation:
1. Department of Biochemistry and Biophysics, University of California, San Francisco 94143.
Abstract
The bop gene cluster consists of at least three genes: bop (bacterio-opsin), brp (bacterio-opsin-related protein), and bat (bacterio-opsin activator). We have quantitated transcript levels from these genes in a wild-type and bacterioruberin-deficient mutant of Halobacterium halobium under conditions which affect purple membrane synthesis. In wild-type cultures grown under high oxygen tension in the dark, bop and bat transcript levels were low during steady-state growth and then increased approximately 29- and approximately 45-fold, respectively, upon entry into stationary phase. brp gene transcription remained very low and essentially unchanged under these conditions. In addition, exposure of wild-type cultures growing under high oxygen tension to 30,000 lx of light stimulated expression of all three genes, especially brp. In contrast to the wild-type, transcription from all three genes in the bacterioruberin mutant was very high during steady-state growth under high oxygen tension in the dark. Cultures of the bacterioruberin mutant were shifted at early stationary phase to low oxygen tension to determine whether oxygen concentrations lower than those present in stationary phase would induce transcription of the bop gene cluster in this strain. Indeed, transcription was induced, suggesting that the bop gene cluster is not completely uncoupled from regulation by oxygen tension in the bacterioruberin mutant. From these data, we propose a regulatory model involving two different mechanisms: (i) bat gene expression is induced under conditions of low oxygen tension and the bat gene product activates bop gene expression and (ii) light induces brp transcription, which stimulates or modulates bat transcription.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献