Ammonium Concentrations in Produced Waters from a Mesothermic Oil Field Subjected to Nitrate Injection Decrease through Formation of Denitrifying Biomass and Anammox Activity

Author:

Cornish Shartau Sabrina L.1,Yurkiw Marcy1,Lin Shiping1,Grigoryan Aleksandr A.1,Lambo Adewale1,Park Hyung-Soo1,Lomans Bart P.2,van der Biezen Erwin3,Jetten Mike S. M.3,Voordouw Gerrit1

Affiliation:

1. Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada

2. EPT, Exploratory Research, Shell International Exploration and Production B.V., Kessler Park 1, 2288 GS Rijswijk, Netherlands

3. Institute of Water and Wetland Research, Department of Microbiology, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, Netherlands

Abstract

ABSTRACT Community analysis of a mesothermic oil field, subjected to continuous field-wide injection of nitrate to remove sulfide, with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes indicated the presence of heterotrophic and sulfide-oxidizing, nitrate-reducing bacteria (hNRB and soNRB). These reduce nitrate by dissimilatory nitrate reduction to ammonium (e.g., Sulfurospirillum and Denitrovibrio ) or by denitrification (e.g., Sulfurimonas , Arcobacter , and Thauera ). Monitoring of ammonium concentrations in producing wells (PWs) indicated that denitrification was the main pathway for nitrate reduction in the field: breakthrough of nitrate and nitrite in two PWs was not associated with an increase in the ammonium concentration, and no increase in the ammonium concentration was seen in any of 11 producing wells during periods of increased nitrate injection. Instead, ammonium concentrations in produced waters decreased on average from 0.3 to 0.2 mM during 2 years of nitrate injection. Physiological studies with produced water-derived hNRB microcosms indicated increased biomass formation associated with denitrification as a possible cause for decreasing ammonium concentrations. Use of anammox-specific primers and cloning of the resulting PCR product gave clones affiliated with the known anammox genera “ Candidatus Brocadia” and “ Candidatus Kuenenia,” indicating that the anammox reaction may also contribute to declining ammonium concentrations. Overall, the results indicate the following: (i) that nitrate injected into an oil field to oxidize sulfide is primarily reduced by denitrifying bacteria, of which many genera have been identified by DGGE, and (ii) that perhaps counterintuitively, nitrate injection leads to decreasing ammonium concentrations in produced waters.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3