Escherichia coli Lrp Regulates One-Third of the Genome via Direct, Cooperative, and Indirect Routes

Author:

Kroner Grace M.12,Wolfe Michael B.13,Freddolino Peter L.13ORCID

Affiliation:

1. Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA

2. Cellular Biotechnology Training Program, University of Michigan Medical School, Ann Arbor, Michigan, USA

3. Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA

Abstract

To survive, bacteria such as E. coli must rapidly respond to changing environmental conditions, including nutrient levels. A decrease in nutrient availability causes bacteria to stop rapid replication and enter stationary phase, where they perform limited to no cell division. The E. coli global regulatory protein Lrp has been previously implicated in modulating the expression of genes particularly important at this transition from rapid to slowed growth. Here, we monitor Lrp’s DNA binding locations and effect on gene expression under three different nutrient conditions across three growth stages. We find that Lrp’s role is even broader than previously suspected and that it appears to interact with many other bacterial regulators to perform its function in a condition-specific manner.

Funder

HHS | National Institutes of Health

National Science Foundation

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3