Human phagocytes have multiple lipid A-binding sites

Author:

Golenbock D T1,Hampton R Y1,Raetz C R1,Wright S D1

Affiliation:

1. Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York 10021.

Abstract

Bacterial lipopolysaccharide (LPS) is a potent stimulus of cells, yet a target protein for LPS has not been defined. We used two approaches to define LPS-binding sites on cell surfaces: one assay measured binding of LPS-coated erythrocytes (ELPS) to cultured human cells, and a second measured binding of a radiolabeled probe, [32P]lipid IVA, to intact leukocytes. The first approach identified the CD11-CD18 family of integrins as lipid A-binding sites in human phagocytes, and the latter approach demonstrated saturable lipid A binding to intact murine macrophages, as well as to an approximately 95-kDa binding protein in purified membrane preparations. Because CD18 has a known molecular mass of 95 kDa, we sought to determine whether the [32P]lipid IVA-binding site was CD18. Binding of ELPS and [32P]lipid IVA to human macrophages was found to differ with respect to temperature, divalent cation dependence, cellular specificity, and susceptibility to competition by polyanions. To determine whether the previously described 95-kDa lipid A-binding protein was CD18, nitrocellulose-immobilized RAW264.7 membrane proteins were probed with [32P]lipid IVA and subsequently immunoblotted with a monoclonal antibody to murine CD18. The lipid A-binding protein has an electrophoretic mobility slightly different from that of CD18. Moreover, monoclonal antibodies and polyclonal antiserum to the CD11-CD18 family of proteins did not inhibit lipid IVA binding to intact human macrophages. Finally, mononuclear cells from two patients with CD18 deficiency failed to form rosettes with ELPS but bound [32P]lipid IVA normally. Thus, different LPS preparations may bind to cells in a CD18-dependent or -independent manner. Since ELPS is particulate and lipid IVA is a fine dispersion, the identity of the binding site may depend on the physical state of the LPS.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference21 articles.

1. Pseudomonas aeruginosa bacteremia: univariate and multivariate analyses of factors influencing the prognosis in 133 episodes;Bisbe J.;Rev. Infect. Dis.,1988

2. A rapid method of total lipid extraction and purification;Bligh E. G.;Can. J. Biochem. Physiol.,1959

3. Induction of cell-associated IL-1 through stimulation of the adhesion-promoting proteins LFA-I (CD11a/CD18) and CR3 (CD11b/CD18) of human monocytes;Couturier C. N.;Eur. J. Immunol.,1990

4. Lipopolysaccharide receptor on rabbit peritoneal macrophages;Haeffner-Cavaillon N.;J. Immunol.,1982

5. Lipid A binding sites of membranes of macrophage tumor cells;Hampton R. Y.;J. Biol. Chem.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3