The Insert Region of RhoA Is Essential for Rho Kinase Activation and Cellular Transformation

Author:

Zong Hui1,Kaibuchi Kozo2,Quilliam Lawrence A.1

Affiliation:

1. Department of Biochemistry and Molecular Biology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, 1 and

2. Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan2

Abstract

ABSTRACT RhoA is involved in multiple cellular processes, including cytoskeletal organization, gene expression, and transformation. These processes are mediated by a variety of downstream effector proteins. However, which effectors are involved in cellular transformation and how these proteins are activated following interaction with Rho remains to be established. A unique feature that distinguishes the Rho family from other Ras-related GTPases is the insert region, which may confer Rho-specific signaling events. Here we report that deletion of the insert region does not result in impaired effector binding. Instead, this insert deletion mutant (RhoΔRas, in which the insert helix has been replaced with loop 8 of Ras) acted in a dominant inhibitory fashion to block RhoA-induced transformation. Since RhoΔRas failed to promote stress fiber formation, we examined the ability of this mutant to bind to and subsequently activate Rho kinase. Surprisingly, RhoΔRas-GTP coprecipitated with Rho kinase but failed to activate it in vivo. These data suggested that the insert domain is not required for Rho kinase binding but plays a role in its activation. The constitutively active catalytic domain of Rho kinase did not promote focus formation alone or in the presence of Raf(340D) but cooperated with RhoΔRas to induce cellular transformation. This suggests that Rho kinase needs to cooperate with additional Rho effectors to promote transformation. Further, the Rho kinase catalytic domain reversed the inhibitory effect of RhoΔRas on Rho-induced transformation, suggesting that one of the downstream targets of Rho-induced transformation abrogated by RhoΔRas is indeed Rho kinase. In conclusion, we have demonstrated that the insert region of RhoA is required for Rho kinase activation but not for binding and that this kinase activity is required to induce morphologic transformation of NIH 3T3 cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3