Differential Bacterial Survival, Replication, and Apoptosis-Inducing Ability of Salmonella Serovars within Human and Murine Macrophages

Author:

Schwan William R.12,Huang Xiao-Zhe1,Hu Lan1,Kopecko Dennis J.1

Affiliation:

1. Laboratory of Enteric and Sexually Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892,1 and

2. Department of Biology and Microbiology, University of Wisconsin—La Crosse, La Crosse, Wisconsin 546012

Abstract

ABSTRACT Salmonella serovars are associated with human diseases that range from mild gastroenteritis to host-disseminated enteric fever. Human infections by Salmonella enterica serovar Typhi can lead to typhoid fever, but this serovar does not typically cause disease in mice or other animals. In contrast, S. enterica serovar Typhimurium and S. enterica serovar Enteritidis, which are usually linked to localized gastroenteritis in humans and some animal species, elicit a systemic infection in mice. To better understand these observations, multiple strains of each of several chosen serovars of Salmonella were tested for the ability in the nonopsonized state to enter, survive, and replicate within human macrophage cells (U937 and elutriated primary cells) compared with murine macrophage cells (J774A.1 and primary peritoneal cells); in addition, death of the infected macrophages was monitored. The serovar Typhimurium strains all demonstrated enhanced survival within J774A.1 cells and murine peritoneal macrophages, compared with the significant, almost 100-fold declines in viable counts noted for serovar Typhi strains. Viable counts for serovar Enteritidis either matched the level of serovar Typhi (J774A.1 macrophages) or were comparable to counts for serovar Typhimurium (murine peritoneal macrophages). Apoptosis was significantly higher in J774A.1 cells infected with serovar Typhimurium strain LT2 compared to serovar Typhi strain Ty2. On the other hand, serovar Typhi survived at a level up to 100-fold higher in elutriated human macrophages and 2- to 3-fold higher in U937 cells compared to the serovar Typhimurium and Enteritidis strains tested. Despite the differential multiplication of serovar Typhi during infection of U937 cells, serovar Typhi caused significantly less apoptosis than infections with serovar Typhimurium. These observations indicate variability in intramacrophage survival and host cytotoxicity among the various serovars and are the first to show differences in the apoptotic response of distinct Salmonella serovars residing in human macrophage cells. These studies suggest that nonopsonized serovar Typhimurium enters, multiplies within, and causes considerable, acute death of macrophages, leading to a highly virulent infection in mice (resulting in death within 14 days). In striking contrast, nonopsonized serovar Typhi survives silently and chronically within human macrophages, causing little cell death, which allows for intrahost dissemination and typhoid fever (low host mortality). The type of disease associated with any particular serovar of Salmonella is linked to the ability of that serovar both to persist within and to elicit damage in a specific host's macrophage cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference33 articles.

1. Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes;Alpuche-Aranda C. M.;J. Exp. Med.,1994

2. Spacious phagosome formation within mouse macrophages correlates with Salmonella serotype pathogenicity and host susceptibility

3. Arai T. Ishibashi Y. Matsui K. Mechanism of selective pathogenesis of Salmonella serovars and suggestions for chemotherapy and development of safe vaccines for typhoid fever Typhoid fever strategies for the 90's. Pang T. Koh C. L. Putchucheary S. D. 1992 140 147 World Scientific River Edge N.J

4. Quantitative analysis and partial characterization of cytotoxin production by Salmonella strains

5. Cytotoxic enterotoxins and cytotoxic factors produced by S. enteritidis and S. typhimurium;Baloda S. B.;Toxicon,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3