Bacterial Induction of Beta Interferon in Mice Is a Function of the Lipopolysaccharide Component

Author:

Sing Andreas1,Merlin Thomas1,Knopf Hans-Peter1,Nielsen Peter J.1,Loppnow Harald2,Galanos Chris1,Freudenberg Marina A.1

Affiliation:

1. Max-Planck-Institut für Immunbiologie, D-79108 Freiburg,1 and

2. Klinik und Poliklinik für Innere Medizin III, Forschungslabor, D-06097 Halle (Saale),2 Germany

Abstract

ABSTRACT We investigated the reason for the inability of lipopolysaccharide (LPS)-resistant ( Lps -defective [ Lps d ]) C57BL/10ScCr mice to produce beta interferon (IFN-β) when stimulated with bacteria. For this purpose, the IFN-β and other macrophage cytokine responses induced by LPS and several killed gram-negative and gram-positive bacteria in LPS-sensitive ( Lps -normal [ Lps n ]; C57BL/10ScSn and BALB/c) and Lps d (C57BL/10ScCr and BALB/c/l) mice in vitro and in vivo were investigated on the mRNA and protein levels. In addition, double-stranded RNA (dsRNA) was used as a nonbacterial stimulus. LPS and all gram-negative bacteria employed induced IFN-β in the Lps n mice but not in the Lps d mice. All gram-positive bacteria tested failed to induce significant amounts of IFN-β in all four of the mouse strains used. As expected, all other cytokines tested (tumor necrosis factor alpha, interleukin 1α [IL-1α], IL-6, and IL-10) were differentially induced by gram-negative and gram-positive bacteria. Stimulation with dsRNA induced IFN-β and all other cytokines mentioned above in all mouse strains, regardless of their LPS sensitivities. The results suggest strongly that LPS is the only bacterial component capable of inducing IFN-β in significant amounts that are readily detectable under the conditions used in this study. Consequently, in mice, IFN-β is inducible only by gram-negative bacteria, but not in C57BL/10ScCr or other LPS-resistant mice.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3