Comparative Antibody-Mediated Phagocytosis of Staphylococcus epidermidis Cells Grown in a Biofilm or in the Planktonic State

Author:

Cerca Nuno12,Jefferson Kimberly K.23,Oliveira Rosario1,Pier Gerald B.2,Azeredo Joana1

Affiliation:

1. Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal

2. Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts

3. Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia

Abstract

ABSTRACT Staphylococcus epidermidis is an important cause of nosocomial infections. Virulence is attributable to elaboration of biofilms on medical surfaces that protect the organisms from immune system clearance. Even though leukocytes can penetrate biofilms, they fail to phagocytose and kill bacteria. The properties that make biofilm bacteria resistant to the immune system are not well characterized. In order to better understand the mechanisms of resistance of bacteria in biofilms to the immune system, we evaluated antibody penetration throughout the biofilm and antibody-mediated phagocytic killing of planktonic versus biofilm cells of S. epidermidis by using a rabbit antibody to poly- N -acetylglucosamine (PNAG). These antibodies are opsonic and protect against infection with planktonic cells of PNAG-positive Staphylococcus aureus and S. epidermidis . Antibody to PNAG readily penetrated the biofilm and bound to the same areas in the biofilm as did wheat germ agglutinin, a lectin known to bind to components of staphylococcal biofilms. However, biofilm cells were more resistant to opsonic killing than their planktonic counterparts in spite of producing more PNAG per cell than planktonic cells. Biofilm extracts inhibited opsonic killing mediated by antibody to PNAG, suggesting that the PNAG antigen within the biofilm matrix prevents antibody binding close to the bacterial cell surface, which is needed for efficient opsonic killing. Increased resistance of biofilm cells to opsonic killing mediated by an otherwise protective antibody was due not to a biofilm-specific phenotype but rather to high levels of antigen within the biofilm that prevented bacterial opsonization by the antibody.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3