Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus

Author:

White T C1

Affiliation:

1. Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, and Seattle Biomedical Research Institute, 98109, USA. tedwhite@u.washington.edu

Abstract

Resistance to antifungal drugs, specifically azoles such as fluconazole, in the opportunistic yeast Candida albicans has become an increasing problem in human immunodeficiency virus (HIV)-infected individuals. The molecular mechanisms responsible for this resistance have only recently become apparent and can include alterations in the target enzyme of the azole drugs (lanosterol 14alpha demethylase [14DM]), or in various efflux pumps from both the ABC transporter and major facilitator gene families. To determine which of these possible mechanisms was associated with the development of drug resistance in a particular case, mRNA levels have been studied in a series of 17 clinical isolates taken from a single HIV-infected patient over 2 years, during which time the levels of fluconazole resistance of the strain increased over 200-fold. Using Northern blot analysis of steady-state levels of total RNA from these isolates, we observed increased mRNA levels of ERG16 (the 14DM-encoding gene), CDR1 (an ABC transporter), and MDR1 (a major facilitator) in this series. The timing of the increase in mRNA levels of each of these genes correlated with increases in fluconazole resistance of the isolates. Increased mRNA levels were not observed for three other ABC transporters, two other genes in the ergosterol biosynthetic pathway, or the NADPH-cytochrome P-450 oxidoreductase gene that transfers electrons from NADPH to 14DM. Increases in mRNA levels of ERG16 and CDR1 correlated with increased cross-resistance to ketoconazole and itraconazole but not to amphotericin B. A compilation of the genetic alterations identified in this series suggests that resistance develops gradually and is the sum of several different changes, all of which contribute to the final resistant phenotype.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference48 articles.

1. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1995. Current protocols in molecular biology. John Wiley & Sons Inc. New York N.Y.

2. Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene;Ben-Yaacov R.;Antimicrob. Agents Chemother.,1994

3. Cannon R. Personal communication.

4. Isolation of the Candida tropicalis gene for P450 lanosterol demethylase and its expression in Saccharomyces cerevisiae;Chen C.;Biochem. Biophys. Res. Commun.,1987

5. Correlation between rhodamine 123 accumulation and azole sensitivity in Candida species: possible role for drug efflux in drug resistance;Clark F. S.;Antimicrob. Agents Chemother.,1996

Cited by 544 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3