Entry of bacteriophage T7 DNA into the cell and escape from host restriction

Author:

Moffatt B A1,Studier F W1

Affiliation:

1. Biology Department, Brookhaven National Laboratory, Upton, New York 11973.

Abstract

T7 DNA did not become susceptible to degradation by the host restriction enzymes EcoB, EcoK, or EcoP1 until 6 to 7 min after infection (at 30 degrees C). During this period, T7 gene 0.3 protein is made and inactivates EcoB and EcoK, allowing wild-type T7, or even a mutant that has recognition sites flanking gene 0.3, to escape restriction by these enzymes. However, T7 failed to escape restriction by EcoP1 even though 0.3 protein was made, evidently because 0.3 protein is unable to inactivate EcoP1. How T7 DNA can be accessible to transcription but not restriction in the first few minutes of infection is not yet understood, but we favor the idea that the entering DNA is initially segregated in a special place. Entry of T7 DNA into the cell is normally coupled to transcription. Tests of degradation of DNAs having their first restriction sites different distances from the end of the DNA indicated that only the first 1,000 or so base pairs (2.5%) of the molecule enter the cell without transcription. An exception was the only mutant tested that lacks base pairs 343 to 393 of T7 DNA; most or all of this DNA entered the cell without being transcribed, apparently because it lacks a sequence that normally arrests entry. This block to DNA entry would normally be relieved by the host RNA polymerase transcribing from an appropriately situated promoter, but the block can also be relieved by T7 RNA polymerase, if supplied by the host cell. T7 mutants that lack all three strong early promoters A1, A2, and A3 could grow by using a secondary promoter.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference36 articles.

1. Inhibition of the type I restriction-modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7;Bandyopadhyay P. K.;J. Mol. Biol.,1985

2. Bickle T. A. 1982. The ATP-dependent restriction endonucleases p. 85-108. In S. M. Linn and R. J. Roberts (ed.) Nucleases. Cold Spring Harbor Laboratory Cold Spring Harbor N.Y.

3. The process of infection with coliphage T7. VI. A phage gene controlling shutoff of host RNA synthesis;Brunovskis I.;Virology,1972

4. New RNA polymerase from Escherichia coli infected with bacteriophage T7;Chamberlin M.;Nature (London),1970

5. Cloning and expression of the gene for bacteriophage T7 RNA polymerase;Davanloo P.;Proc. Natl. Acad. Sci. USA,1984

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3