Affiliation:
1. Department of Oral Biology, Rutgers School of Dental Medicine, Newark, New Jersey, USA
Abstract
ABSTRACT
The Gram-negative bacterium
Aggregatibacter actinomycetemcomitans
is a causative agent of localized aggressive periodontitis. Critical to its infection process is the first and essential step of attachment, which is related to the coordinated functions of surface components comprised of proteins and extracellular polysaccharides. One such protein is the outer membrane trimeric autotransporter protein ApiA, a versatile virulence factor with numerous functions, including cell binding, invasion, serum resistance, autoaggregation, and induction of cytokine release. Here we report on the use of
Escherichia coli
strains expressing protein variants to define the separate functions ascribed to the N terminus and those related to the C terminus. Importantly, a hybrid protein that comprised the N terminus of trimeric ApiA and the β-barrel domain of monomeric autotransporter Aae was constructed, which allowed the expression of a monomer surface-exposed domain of ApiA. Functional and phenotypic analyses demonstrated that the C terminus of ApiA forms an independent domain that is crucial for general stability and trimer formation, which appears to be associated with autoaggregation, biofilm formation, and surface expression. Importantly, the results show that the monomeric form of the N-terminal passenger domain of ApiA, while surface exposed, is sufficient for binding to buccal epithelial cells; however, it is not sufficient to allow aggregation and biofilm formation, strengthening the importance of the role of trimerization in these phenotypes.
Funder
HHS | NIH | National Institute of Dental and Craniofacial Research
HHS | National Institutes of Health
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献