Attachment of lipoprotein to murein (peptidoglycan) of Escherichia coli in the presence and absence of penicillin FL 1060

Author:

Braun V,Wolff H

Abstract

In vivo studies on the attachment of lipoprotein to the murein (peptidoglycan) of Escherichia coli showed that it takes several generations of growth until the amount of lipoprotein on newly made murein is equilibrated. The technique used involves degradation of the sodium dodecyl sulfate-insoluble murein-lipoprotein complex (sacculus, rigid layer) with lysozyme and separation of the labeled products on paper. No lipoprotein was found on murein subunits incorporated during a pulse of [3H]diaminopimelate for 1 min in logarithmically growing cells at 37 C. Even after one doubling of the cell mass, only 4 to 8% of the labeled murein was isolated as bound to lipoprotein. With uniformly labeled murein, 30% remains bound to lipoprotein after lysozyme treatment, corresponding to three murein subunits. Therefore it can be concluded that during pulse labeling either no lipoprotein is incorporated into the newly synthesized murein or no murein subunits are inserted into existing murein around lipoprotein attachment sites. Longer pulse and pulse-chase experiments argue for the latter interpretation. It is therefore concluded that incorporation of murein subunits into the growing murein polymer is not at all a random process. Instead, quite large areas of murein, on which lipoprotein is situated, seem to be preserved. Under the influence of penicillin FL 1060 murein synthesis is 50% inhibited. The rate of lipoprotein attachment is less affected so that increasing amounts of lipoprotein become attached during spheroplast formation. By the time the stationary growth phase has been reached, the lipoprotein content of the murein has doubled. Diaminopimelate auxotrophic mutants require, in the presence of penicillin FL 1060, more diaminopimelate for full growth than in the absence of penicillin FL 1060. This finding and the fact that murein synthesis is always inhibited by 50% over a wide range of penicillin concentration (1 to 1,000 mug/ml) point to the inhibition of an enzymatic step of murein synthesis which can be partially bypassed by a second enzyme, less efficient but resistant to penicillin FL 1060.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3