Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs

Author:

Ou S H1,Wu F1,Harrich D1,García-Martínez L F1,Gaynor R B1

Affiliation:

1. Department of Medicine, University of Texas Southwestern Medical Center at Dallas 75235, USA.

Abstract

Human immunodeficiency virus type 1 (HIV-1) gene expression is modulated by both viral and cellular factors. A regulatory element in the HIV-1 long terminal repeat known as TAR, which extends from nucleotides -18 to +80, is critical for the activation of gene expression by the transactivator protein, Tat. RNA transcribed from TAR forms a stable stem-loop structure which serves as the binding site for both Tat and cellular factors. Although TAR RNA is critical for Tat activation, the role that TAR DNA plays in regulating HIV-1 gene expression is not clear. Several studies have demonstrated that TAR DNA can bind cellular proteins, such as UBP-1/LBP-1, which repress HIV-1 gene expression and other factors which are involved in the generation of short, nonprocessive transcripts. In an attempt to characterize additional cellular factors that bind to TAR DNA, a lambda gt11 expression cloning strategy involving the use of a portion of TAR DNA extending from -18 to +28 to probe a HeLa cDNA library was used. We identified a cDNA, designated TAR DNA-binding protein (TDP-43), which encodes a cellular factor of 43 kDa that binds specifically to pyrimidine-rich motifs in TAR. Antibody to TDP-43 was used in gel retardation assays to demonstrate that endogenous TDP-43, present in HeLa nuclear extract, also bound to TAR DNA. Although TDP-43 bound strongly to double-stranded TAR DNA via its ribonucleoprotein protein-binding motifs, it did not bind to TAR RNA extending from +1 to +80. To determine the function of TDP-43 in regulating HIV-1 gene expression, in vitro transcription analysis was performed. TDP-43 repressed in vitro transcription from the HIV-1 long terminal repeat in both the presence and absence of Tat, but it did not repress transcription from other promoters such as the adenovirus major late promoter. In addition, transfection of a vector which expressed TDP-43 resulted in the repression of gene expression from an HIV-1 provirus. These results indicate that TDP-43 is capable of modulating both in vitro and in vivo HIV-1 gene expression by either altering or blocking the assembly of transcription complexes that are capable of responding to Tat.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3