Herpes Simplex Virus 1 U L 31 and U L 34 Gene Products Promote the Late Maturation of Viral Replication Compartments to the Nuclear Periphery

Author:

Simpson-Holley Martha1,Baines Joel2,Roller Richard3,Knipe David M.1

Affiliation:

1. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115

2. Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853

3. Department of Microbiology, University of Iowa, Iowa City, Iowa 52242

Abstract

ABSTRACT Herpes simplex virus 1 (HSV-1) forms replication compartments (RCs), domains in which viral DNA replication, late-gene transcription, and encapsidation take place, in the host cell nucleus. The formation of these domains leads to compression and marginalization of host cell chromatin, which forms a dense layer surrounding the viral RCs and constitutes a potential barrier to viral nuclear egress or primary envelopment at the inner nuclear membrane. Surrounding the chromatin layer is the nuclear lamina, a further host cell barrier to egress. In this study, we describe an additional phase in RC maturation that involves disruption of the host chromatin and nuclear lamina so that the RC can approach the nuclear envelope. During this phase, the structure of the chromatin layer is altered so that it no longer forms a continuous layer around the RCs but instead is fragmented, forming islands between which RCs extend to reach the nuclear periphery. Coincident with these changes, the nuclear lamina components lamin A/C and lamin-associated protein 2 appear to be redistributed via a mechanism involving the U L 31 and U L 34 gene products. Viruses in which the U L 31 or U L 34 gene has been deleted are unable to undergo this phase of chromatin reorganization and lamina alterations and instead form RCs which are bounded by an intact host cell chromatin layer and nuclear lamina. We postulate that these defects in chromatin restructuring and lamina reorganization explain the previously documented growth defects of these mutant viruses.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3