Drug Resistance Patterns of Recombinant Herpes Simplex Virus DNA Polymerase Mutants Generated with a Set of Overlapping Cosmids and Plasmids

Author:

Bestman-Smith Julie1,Boivin Guy1

Affiliation:

1. Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec (Pavillon CHUL) and Université Laval, Québec, Canada

Abstract

ABSTRACT Herpes simplex virus (HSV) DNA polymerase (Pol) mutations can confer resistance to all currently available antiherpetic drugs. However, discrimination between mutations responsible for drug resistance and those that are part of viral polymorphism can be difficult with current methodologies. A new system is reported for rapid generation of recombinant HSV type 1 (HSV-1) DNA Pol mutants based on transfection of a set of overlapping viral cosmids and plasmids. With this approach, twenty HSV-1 recombinants with single or dual mutations within the DNA pol gene were successfully generated and subsequently evaluated for their susceptibilities to acyclovir (ACV), foscarnet (FOS), cidofovir (CDV), and adefovir (ADV). Mutations within DNA Pol conserved regions II (A719T and S724N), VI (L778M, D780N, and L782I), and I (F891C) were shown to induce cross-resistance to ACV, FOS, and ADV, with two of these mutations (S724N and L778M) also conferring significant reduction in CDV susceptibility. Mutant F891C was associated with the highest levels of resistance towards ACV and FOS and was strongly impaired in its replication capacity. One mutation (D907V) lying outside of the conserved regions was also associated with this ACV-, FOS-, and ADV-resistant phenotype. Some mutations (K522E and Y577H) within the δ-region C were lethal, whereas others (P561S and V573M) induced no resistance to any of the drugs tested. Recombinants harboring mutations within conserved regions V (N961K) and VII (Y941H) were resistant to ACV but susceptible to FOS. Finally, mutations within conserved region III were associated with various susceptibility profiles. This new system allows a rapid and accurate evaluation of the functional role of various DNA Pol mutations, which should translate into improved management of drug-resistant HSV infections.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3