Molecular Cloning of Apicoplast-Targeted Plasmodium falciparum DNA Gyrase Genes: Unique Intrinsic ATPase Activity and ATP-Independent Dimerization of PfGyrB Subunit

Author:

Dar Mohd Ashraf1,Sharma Atul1,Mondal Neelima2,Dhar Suman Kumar1

Affiliation:

1. Special Centre for Molecular Medicine

2. School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India

Abstract

ABSTRACT DNA gyrase, a typical type II topoisomerase that can introduce negative supercoils in DNA, is essential for replication and transcription in prokaryotes. The apicomplexan parasite Plasmodium falciparum contains the genes for both gyrase A and gyrase B in its genome. Due to the large sizes of both proteins and the unusual codon usage of the highly AT-rich P. falciparum gyrA (Pf gyrA ) and Pf gyrB genes, it has so far been impossible to characterize these proteins, which could be excellent drug targets. Here, we report the cloning, expression, and functional characterization of full-length PfGyrB and functional domains of PfGyrA. Unlike Escherichia coli GyrB, PfGyrB shows strong intrinsic ATPase activity and follows a linear pattern of ATP hydrolysis characteristic of dimer formation in the absence of ATP analogues. These unique features have not been reported for any known gyrase so far. The Pf gyrB gene complemented the E. coli gyrase temperature-sensitive strain, and, together with the N-terminal domain of PfGyrA, it showed typical DNA cleavage activity. Furthermore, PfGyrA contains a unique leucine heptad repeat that might be responsible for dimerization. These results confirm the presence of DNA gyrase in eukaryotes and confer great potential for drug development and organelle DNA replication in the deadliest human malarial parasite, P. falciparum .

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3