Sizing the Holin Lesion with an Endolysin-β-Galactosidase Fusion

Author:

Wang Ing-Nang1,Deaton John1,Young Ry1

Affiliation:

1. Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128

Abstract

ABSTRACT Double-stranded DNA phages require two proteins for efficient host lysis: the endolysin, a muralytic enzyme, and the holin, a small membrane protein. In an event that defines the end of the vegetative cycle, the λ holin S acts suddenly to permeabilize the membrane. This permeabilization enables the R endolysin to attack the cell wall, after which cell lysis occurs within seconds. A C-terminal fusion of the R endolysin with full-length β-galactosidase (β-Gal) was tested for lytic competence in the context of the late-gene expression system of an induced λ lysogen. Under these conditions, the hybrid R-β-Gal product, an active tetrameric β-Gal greater than 480 kDa in mass, was fully functional in lysis mediated by the S holin. Western blot analysis demonstrated that the lytic competence was not due to the proteolytic release of the endolysin domain of the R-β-Gal fusion protein. The ability of this massive complex to be released by the S holin suggests that S causes a generalized membrane disruption rather than a regular oligomeric membrane pore. Similar results were obtained with an early lysis variant of the S holin and also in parallel experiments with the T4 holin, T, in an identical lambda context. However, premature holin lesions triggered by depolarization of the membrane were nonpermissive for the hybrid endolysin, indicating that these premature lesions constituted less-profound damage to the membrane. Finally, a truncated T holin functional in lysis with the endolysin is completely incompetent for lysis with the hybrid endolysin. A model for the formation of the membrane lesion within homo-oligomeric rafts of holin proteins is discussed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3