Influence of Platelets and Platelet Microbicidal Protein Susceptibility on the Fate of Staphylococcus aureus in an In Vitro Model of Infective Endocarditis

Author:

Mercier Renee-Claude12,Rybak Michael J.13,Bayer Arnold S.45,Yeaman Michael R.45

Affiliation:

1. The Anti-Infective Research Laboratory, Detroit Receiving Hospital/University Health Center and College of Pharmacy,1 and

2. University of New Mexico–College of Pharmacy, Albuquerque, New Mexico 871312;

3. Department of Internal Medicine, School of Medicine, Wayne State University,3 Detroit, Michigan 48201;

4. Department of Medicine, Division of Infectious Diseases, St. John's Cardiovascular Research Center, LAC-Harbor UCLA Medical Center Research and Education Institute, Torrance, California 905024; and

5. School of Medicine, University of California, Los Angeles, California 900245

Abstract

ABSTRACT Several lines of evidence indicate that platelets protect against endovascular infections such as infective endocarditis (IE). It is highly likely that a principal mechanism of this platelet host defense role is the release of platelet microbicidal proteins (PMPs) in response to agonists generated at sites of endovascular infection. We studied the ability of platelets to limit the colonization and proliferation of Staphylococcus aureus in an in vitro model of IE. Three isogenic S. aureus strains, differing in their in vitro susceptibility to thrombin-induced platelet microbicidal protein-1 (tPMP), were used: ISP479C (parental strain; highly susceptible to tPMP [tPMP s ]); ISP479R (transposon mutant derived from ISP479; tPMP resistant [tPMP r ]); or 757-5 (tPMP r transductant of the ISP479R genotype in the ISP479 parental background). Time-kill assays and in vitro IE models were used to examine the temporal relationship between thrombin-induced platelet activation and S. aureus killing. In time-kill studies, early platelet activation (30 min prior to bacterial exposure) correlated with a significant bactericidal effect against tPMP s ISP479C ( r 2 > 0.90, P < 0.02) but not against tPMP r strains, ISP479R or 757-5. In the IE model, thrombin activation significantly inhibited proliferation of ISP479C within simulated vegetations compared to strains ISP479R or 757-5 ( P < 0.05). The latter differences were observed despite there being no detectable differences among the three S. aureus strains in initial colonization of simulated vegetations. Collectively, these data indicate that platelets limit intravegetation proliferation of tPMP s but not tPMP r S. aureus . These findings underscore the likelihood that platelets play an important antimicrobial host defense role in preventing and/or limiting endovascular infections due to tPMP s pathogens.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3