Stable and Noncompetitive RNA Internal Control for Routine Clinical Diagnostic Reverse Transcription-PCR

Author:

Dingle Kate E.12,Crook Derrick12,Jeffery Katie2

Affiliation:

1. Nuffield Department of Clinical Sciences, Oxford University

2. Department of Microbiology, Oxford Radcliffe NHS Trust, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom

Abstract

ABSTRACT Clinical diagnostic tests based on nucleic acid amplification assist with the prompt diagnosis of microbial infections because of their speeds and extremely low limits of detection. However, the design of appropriate internal controls for such assays has proven difficult. We describe a reaction-specific RNA internal control for diagnostic reverse transcription (RT)-PCR which allows extraction, RT, amplification, and detection to be monitored. The control consists of a G+C-rich (60%) RNA molecule with an extensive secondary structure, based on a modified hepatitis delta virus genome. The rod-like structure of this RNA, with 70% intramolecular base pairing, provides a difficult template for RT-PCR. This ensures that the more favorable target virus amplicon is generated in preference to the control, with the control being detected only if the target virus is absent. The unusual structure of hepatitis delta virus RNA has previously been shown to enhance its stability and resistance to nucleases, an advantage for routine use as an internal control. The control was implemented in three nested multiplex RT-PCRs to detect nine clinically important respiratory viruses: (i) influenza A and B viruses, (ii) respiratory syncytial viruses A and B and human metapneumovirus, and (iii) parainfluenza virus types 1 to 4. The detection limits of these assays were not detectably compromised by the presence of the RNA control. During routine testing of 324 consecutive unselected respiratory samples, the presence of the internal control ensured that genuine and false-negative results were distinguishable, thus increasing the diagnostic confidence in the assay.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3