Impact of carbon coating processing using sucrose for thick binder-free titanium niobium oxide lithium-ion battery anode

Author:

Cai ChenORCID,McCormack PatrickORCID,Nie Ziyang,Koenig GaryORCID

Abstract

Lithium-ion batteries are increasingly important for providing energy storage solutions. In the drive to improve the energy density at the cell level, optimizing the electrode architecture is crucial in addition to researching new materials. Binder-free (BF) electrodes include porous pellets only containing battery electroactive materials. These electrodes can provide advantages with regard to mechanical stability and alleviated ion transport limitations relative to composite approaches for very thick and energy-dense electrodes. However, the absence of conductive additives often limits suitable material candidates for BF battery electrodes. TiNb2O7 (TNO) is a promising BF electrode material from a gravimetric and volumetric capacity standpoint, but phase pure TNO has relatively low electronic conductivity. Herein, a sucrose precursor coating method for TNO materials was implemented to process the TNO materials into BF electrodes. The sucrose served as a source to generate carbon in the electrodes, where the carbon coating resulted in an increase in rate capability, discharge voltage, and cycle life.

Funder

National Science Foundation

Publisher

International Association of Physical Chemists (IAPC)

Subject

Electrochemistry,Materials Chemistry,Colloid and Surface Chemistry,Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3