In silico molecular docking of luteolin as a potential antihyperpigmentation agent

Author:

Putri Lucienne Agatha Larasati NugrahaORCID,Anjani Ni Luh Ari Krisma,Laksmiani Ni Putu LindaORCID,Susanti Ni Made PitriORCID

Abstract

Excessive melanin synthesis, often triggered by overexposure to UV rays, is catalyzed by melanogenesis enzymes such as tyrosinase, tyrosinase-related protein 1, and D-dopachrome tautomerase. Derived from natural sources, the flavonoid compound luteolin is explored for its antihyperpigmentation potential. This study assesses luteolin’s efficacy as an antihyperpigmentation agent by analyzing its affinity and bond interactions with melanogenesis enzymes through an in silico approach. Molecular docking, facilitated by HyperChem 8 for test compound optimization and Chimera 1.11.1 for protein preparation, alongside method validation and docking with AutoDockTools 1.5.6, established the protocol’s validity with an RMSD value of ≤3 Å. Docking results reveal luteolin's higher affinity for the target proteins compared to native ligands, with binding energies of -5.63 kcal/mol for tyrosinase, -6.18 kcal/mol for tyrosinase-related protein 1, and -6.54 kcal/mol for D-dopachrome tautomerase. The interaction between luteolin and these proteins involves hydrogen, hydrophobic, electrostatic, and Van der Waals bonds, with amino acid residues His61, Lys129, Arg132 (tyrosinase); His192, His224, Val89 (tyrosinase-related protein 1); and Ile64, Asn73 (D-dopachrome tautomerase) participating in hydrogen bond formation. These findings suggest luteolin’s significant potential as an antihyperpigmentation agent by inhibiting melanogenesis enzymes.

Publisher

Indonesian Young Scientist Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3