Smartphone Camera for Angiographic Computer Vision in Vascular Medicine

Author:

Rusinovich YuryORCID,Rusinovich VolhaORCID,Doss MarkusORCID

Abstract

Aim: This study aimed to develop a TensorFlow Lite algorithm for angiography classification and to deploy it on a basic mobile smartphone device, thereby verifying the proof of concept for creating a comprehensive end-to-end mobile computer vision application for vascular medicine. Materials and Methods: After ethical approval by the local ethics committee, we collected institutional and open source peripheral angiograms of lower limbs. The angiograms were labeled by a researcher with more than 10 years of experience in vascular surgery. The labeling included dividing the angiograms according to their anatomical pattern into the Global Limb Anatomic Staging System (GLASS). The model was developed using the open-source TensorFlow framework for general image classification and deployed as an Android application. Results: The model utilized 700 angiograms, distributed as follows within the femoropoliteal GLASS disease (fp) categories: fp0 – 187 images, fp1 – 136 images, fp2 – 128 images, fp3 – 97 images, fp4 – 152 images. The reference dataset included 372 non-angiographic images (not_angio). Consequently, the entire model included 1,072 images. After training and deployment, the model demonstrated the following performance: a mean accuracy of 0.72. The best self-reported accuracy per class was for fp0 0.72, fp4 0.83 and not_angio 1.0 classes. Conclusion: We discovered that a smartphone camera could be utilized for angiographic computer vision through end-to-end applications accessible to every healthcare professional. However, the predictive abilities of the model are limited and require improvement. The development of a robust angiographic computer vision smartphone application should incorporate an upload function, undergo validation through head-to-head human-machine comparisons, potentially include segmentation, and feature a prospective design with explicit consent for using collected data in the development of AI models.

Publisher

ML in Health Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3