An automatic and non-intrusive hybrid computer vision system for the estimation of peel thickness in Thomson orange

Author:

Javadikia Hossein,Sabzi Sajad,Arribas Juan I.ORCID

Abstract

Orange peel has important flavor and nutrition properties and is often used for making jam and oil in the food industry. For previous reasons, oranges with high peel thickness are valuable. In order to properly estimate peel thickness in Thomson orange fruit, based on a number of relevant image features (area, eccentricity, perimeter, length/area, blue component, green component, red component, width, contrast, texture, width/area, width/length, roughness, and length) a novel automatic and non-intrusive approach based on computer vision with a hybrid particle swarm optimization (PSO), genetic algorithm (GA) and artificial neural network (ANN) system is proposed. Three features (width/area, width/length and length/area ratios) were selected as inputs to the system. A total of 100 oranges were used, performing cross validation with 100 repeated experiments with uniform random samples test sets. Taguchi’s robust optimization technique was applied to determine the optimal set of parameters. Prediction results for orange peel thickness (mm) based on the levels that were achieved by Taguchi’s method were evaluated in several ways, including orange peel thickness true-estimated boxplots for the 100 orange database and various error parameters: the sum square error (SSE), the mean absolute error (MAE), the coefficient of determination (R2), the root mean square error (RMSE), and the mean square error (MSE), resulting in mean error parameter values of R2=0.854±0.052, MSE=0.038±0.010, and MAE=0.159±0.023, over the test set, which to our best knowledge are remarkable numbers for an automatic and non-intrusive approach with potential application to real-time orange peel thickness estimation in the food industry.

Publisher

Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3